Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The emerging fungal pathogenBatrachochytrium salamandrivorans(Bsal) threatens the diversity of amphibians, particularly in North America where it is projected to invade. Amphibian skin defenses include a mucosal layer containing microorganisms that can potentially modulate host response to pathogens such asBsal. In this study, we focused on the composition of the skin microbiome across life stages of spotted salamanders (Ambystoma maculatum). We also evaluated the stress hormone corticosterone and skin microbiome response to inoculations withBsaland probiotics at both the larval and juvenile developmental stages, and the response to different environmental conditions. Results indicated that both bacterial and fungal communities found on the skin significantly differed in structure and diversity between life stages ofA. maculatum. Exposure to three different probiotics (Bacillus thuringiensis,Chryseobacterium rhizoplanae, andPenicilliumsp.) andBsalevoked shifts in the microbiome of larvae and juveniles, and the metabolite profile of the larval mucosal layer ofA. maculatum. Despite changes in the microbiome, all tested probiotics andBsalwere unable to persist on the skin. Larval bacterial microbiomes shifted in response toBsalandB. thuringiensiswith no significant impacts on antifungal function or bacteria richness, however fungi strongly responded toBsalandB. thuringiensisapplication. This indicates that developmental shifts in the microbiome can be initiated by microbial applications such asB. thuringiensis, a widely used mosquito larvicide. Overall, experimental results indicate that life stage, growth and development, and environmental conditions appeared to be the main factors driving changes in the amphibian skin microbiome and potential anti-Batrachochytriumfunction.more » « less
-
Habitat fragmentation can negatively impact wildlife populations by simplification of ecological interactions, but little is known about how these impacts extend to host-associated symbiotic communities. The symbiotic communities of amphibians play important roles in anti-pathogen defences, particularly against the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). In this study, we analyse the role of macroparasitic helminth communities in concert with microbial communities in defending the host against Bd infection within the context of forest fragmentation. We found that skin microbial and helminth communities are disrupted at fragmented habitats, while gut microbiomes appear more resilient to environmental change. We also detected potential protective roles of helminth diversity and anti-pathogen microbial function in limiting Bd infection. Microbial network analysis revealed strong patterns of structure in both skin and gut communities, with helminths playing central roles in these networks. We reveal consistent roles of microbial and helminth diversity in driving host–pathogen interactions and the potential implications of fragmentation on host fitness.more » « less
-
The amphibian skin microbiome is an important component of anti-pathogen defense, but the impact of environmental change on the link between microbiome composition and host stress remains unclear. In this study, we used radiotelemetry and host translocation to track microbiome composition and function, pathogen infection, and host stress over time across natural movement paths for the forest-associated treefrog, Boana faber. We found a negative correlation between cortisol levels and putative microbiome function for frogs translocated to forest fragments, indicating strong integration of host stress response and anti-pathogen potential of the microbiome. Additionally, we observed a capacity for resilience (resistance to structural change and functional loss) in the amphibian skin microbiome, with maintenance of putative pathogen-inhibitory function despite major temporal shifts in microbiome composition. Although microbiome community composition did not return to baseline during the study period, the rate of microbiome change indicated that forest fragmentation had more pronounced effects on microbiome composition than translocation alone. Our findings reveal associations between stress hormones and host microbiome defenses, with implications for resilience of amphibians and their associated microbes facing accelerated tropical deforestation.more » « less
-
Abstract Batrachochytrium salamandrivorans ( Bsal ) is a fungal pathogen of amphibians that is emerging in Europe and could be introduced to North America through international trade or other pathways. To evaluate the risk of Bsal invasion to amphibian biodiversity, we performed dose-response experiments on 35 North American species from 10 families, including larvae from five species. We discovered that Bsal caused infection in 74% and mortality in 35% of species tested. Both salamanders and frogs became infected and developed Bsal chytridiomycosis. Based on our host susceptibility results, environmental suitability conditions for Bsal , and geographic ranges of salamanders in the United States, predicted biodiversity loss is expected to be greatest in the Appalachian Region and along the West Coast. Indices of infection and disease susceptibility suggest that North American amphibian species span a spectrum of vulnerability to Bsal chytridiomycosis and most amphibian communities will include an assemblage of resistant, carrier, and amplification species. Predicted salamander losses could exceed 80 species in the United States and 140 species in North America.more » « less
An official website of the United States government
